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[1] We present a new method for the retrieval of cloud fraction, cloud optical thickness
and cloud top pressure from measurements of the Global Ozone Monitoring
Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY), relevant for the retrieval of trace gas abundances in
cloudy atmospheres. The presented algorithm makes use of the measurements of the
oxygen A-band between 758 and 770 nm and additionally of measurements in the
ultraviolet between 350 and 390 nm. In addition to the cloud parameters, information
about the surface reflection is retrieved. It is shown that measurements in the oxygen
A-band alone contain significant information about only two cloud parameters. By
adding measurements in the ultraviolet, information about cloud fraction, cloud optical
thickness, and cloud top pressure can be retrieved. The cloud retrieval algorithm
was applied to GOME data, and the results are compared to cloud parameters retrieved
from measurements of the Along Track Scanning Radiometer 2 (ATSR-2). The
cloud fractions, cloud optical thickness, and cloud top pressures retrieved by our
algorithm and the corresponding ATSR-2 values have a median difference of !0.01,
2.5 and !33 hPa, respectively, with 68% confidence intervals of ±0.11, ±7.5 and
±111 hPa, respectively.

Citation: van Diedenhoven, B., O. P. Hasekamp, and J. Landgraf (2007), Retrieval of cloud parameters from satellite-based
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1. Introduction

[2] Satellite measurements of reflected sunlight in the
ultraviolet (UV), visible, and infrared are extensively used
to monitor atmospheric compounds, such as ozone, nitrogen-
dioxide (NO2), sulphur-dioxide (SO2), water vapor, and
aerosols. For these purposes, the Global Ozone Monitoring
Experiment (GOME-1 and GOME-2) [Burrows et al., 1999],
the Scanning Imaging Absorption Spectrometer for Atmo-
spheric Chartography (SCIAMACHY) [Bovensmann et al.,
1999], and the Ozone Monitoring Instrument (OMI) [Levelt
et al., 2006] measure the Earth reflectance in the wave-
length ranges 240–800, 240–2380, and 270–500 nm,
respectively. The large fields-of-view of GOME (320 "
40 km2), SCIAMACHY (60 " 30 km2), and OMI (13 "
24 km2) imply that, on average, about 98%, 94% and 90%
of their measurements, respectively, are contaminated by
clouds [Krijger et al., 2007].
[3] Clouds significantly affect the radiation field in the

atmosphere because of their relatively high reflectance
and because they partly shield the atmosphere below
them. Therefore, it is essential to accurately take the

effect of clouds into account in the retrieval of trace
gas abundances [Thompson et al., 1993; Koelemeijer and
Stammes, 1999; Liu et al., 2004; Wang et al., 2006].
Here, the cloud parameters needed are the cloud optical
thickness, the cloud top pressure, and the relative amount
of clouds in the field of view, i.e., the cloud fraction
[Koelemeijer and Stammes, 1999].
[4] For GOME and SCIAMACHY, several algorithms to

retrieve one or several of these cloud parameters are
available [e.g., Koelemeijer et al., 2001; Rozanov and
Kokhanovsky, 2004; Joiner et al., 2004; Grzegorski et al.,
2006; Van Roozendael et al., 2006]. Many of these algo-
rithms retrieve cloud information from measurements in the
oxygen A-band and the continuum around it [Kuze and
Chance, 1994; Koelemeijer et al., 2001; Rozanov and
Kokhanovsky, 2004]. These measurements are sensitive to
the cloud fraction, cloud optical thickness, and cloud top
pressure. Since the amount of oxygen in the atmosphere is
well known, cloud information can be retrieved from these
measurements. However, different combinations of cloud
fraction and optical thickness produce nearly the same
measurement at the oxygen A-band. For example, Figure 1
shows that two very distinct combinations of cloud fraction
and optical thickness produce similar spectra with differ-
ences below 0.6%. Given the fact that the total error in
forward model and measurement may be expected to be
larger than 0.6% [van Diedenhoven et al., 2005], it is
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virtually impossible to retrieve both cloud fraction and
optical thickness from oxygen A-band measurements. For
this reason, some cloud retrieval algorithms [Kurosu et al.,
1999; Van Roozendael et al., 2006] use the higher spatial
resolution measurements of the Polarization Measuring
Devices (PMDs) to determine the cloud fraction using
thresholds for the intensity values defining cloud-free and
fully clouded scenes. Subsequently, this value for the cloud
fraction is used for the retrieval of cloud top height and cloud
optical thickness from oxygen A-band measurements. A
drawback of this approach is that the retrieved cloud param-
eters strongly depend on the chosen threshold values
[Tuinder et al., 2004]. Alternatively, a fixed cloud optical
thickness can be assumed and so-called effective values of
the cloud fraction and cloud top pressure are retrieved [Kuze
and Chance, 1994; Koelemeijer et al., 2001]. However, the
effective cloud parameters may differ significantly from
actual cloud parameters. For example, assuming that the
actual values of cloud fraction, cloud optical thickness, and
cloud top pressure are 0.5, 10, and 500 hPa, respectively, the
values of the corresponding effective cloud fraction and
effective cloud top pressure are 0.29 and 524 hPa, respec-
tively, when assuming a cloud optical thickness of 40 (see
Figure 1). This may cause problems in the retrieval of trace
gas amounts. For example, Wang et al. [2006] have shown
that the use of effective cloud parameters in DOAS based
tropospheric NO2 column retrievals can cause errors >20%
in the retrieved column for geometrical cloud fractions larger
than 0.5, and errors >10% for geometrical cloud fractions

larger than 0.2. Additionally, effective cloud parameters
retrieved from oxygen A-band measurements are generally
not representative for other spectral ranges. This is illustrated
in Figure 2, which shows two simulated UV reflectance
spectra from 350 to 390 nm and their differences, for the
same two combinations of cloud parameters as used for the
simulations in the oxygen A-band shown in Figure 1. From
Figure 2 it follows that the use of effective cloud parameters
retrieved from measurements at the oxygen A-band results in
errors larger than 3.5% in the spectral range 350–390 nm.
This is due to the much stronger contribution of Rayleigh
scattered light to measurements in the UV than to measure-
ments at the oxygen A-band. In turn, the large differences
between the two spectra in Figure 2 can be explained by
the fact that the spectrum calculated for the effective cloud
parameters has a too large contribution of Rayleigh scat-
tering, due to the difference between effective cloud
fraction and actual cloud fraction. On the one hand, this
means that effective cloud parameters retrieved from oxy-
gen A-band measurements introduce significant errors
when used in the UV spectral range. On the other hand,
it indicates that the combined use of measurements in the
UV and at the oxygen A-band allows the retrieval of
independent information about the cloud fraction, cloud
optical thickness, and cloud top pressure.
[5] In this paper, we present a new method for the

independent retrieval of cloud fraction, cloud optical thick-
ness, and cloud top pressure from GOME and SCIA-
MACHY measurements which is based on this concept.
For this purpose, measurements at the oxygen A-band from
758 to 770 nm and in the UV from 350 to 390 nm are
used. An advantage of our approach in comparison to
approaches using only the oxygen A-band is that, in
addition to the cloud top pressure, information about both
the cloud fraction and cloud optical thickness can be
retrieved, instead of only an effective cloud fraction. The
retrieved cloud parameters are relevant for the retrieval of
trace gas abundances in cloudy atmospheres. The paper is
constructed as follows: in section 2, the retrieval approach

Figure 1. Two forward model calculations in the oxygen
A-band (top panel) and their differences (bottom panel).
The solid line shows the result of a model calculation
assuming a cloud with an optical thickness of 10, a top
pressure of 500 hPa, and a cloud fraction of 0.50. The
dashed line shows the result of a model calculation
assuming a cloud with an optical thickness of 40, a top
pressure of 520 hPa and a cloud fraction of 0.30. All
calculations are performed for a nadir viewing geometry
with a solar zenith angle of 40! and the US standard
atmosphere over a black surface. Here the independent pixel
approximation [e.g., Marshak et al., 1995] is used.

Figure 2. Same as Figure 1 but for the 350- to 390-nm
window.
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is presented. Section 3 discusses the information content of
the measurements, the retrieval noise and regularization
errors on the retrieval result, and the sensitivity of the
retrieval approach to instrument calibration errors. Also,
the relevance of the retrieved cloud parameters to retrieval
of tropospheric NO2 columns is discussed in this section.
Next, in section 4, the retrieval concept is applied to GOME
measurements, and the results are compared to results of the
Fast Retrieval Scheme for Cloud Observables (FRESCO)
[Koelemeijer et al., 2001] and cloud parameters retrieved
from the Along Track Scanning Radiometer 2 (ATSR-2)
instrument. Also, the spectral fitting residuals are discussed
in this section. Finally, we conclude the paper in section 5.

2. Retrieval Approach
2.1. Forward Model

[6] Let us define a measurement vector y, containing the
reflectances measured by GOME or SCIAMACHY in the
spectral ranges 350–390 and 758–770 nm. Next, we define
an atmospheric state vector x that contains the parameters to
be retrieved. In our case, these are the cloud fraction, the
cloud optical thickness at 550 nm, the cloud top pressure,
the surface albedo in both wavelength windows, and their
linear spectral dependence. The geometrical thickness of the
cloud is assumed to be known a priori. For the retrieval of
an atmospheric state vector x from the measurement vector
y, a forward model F is needed that describes how y and x
are related, viz.

y ¼ FðxÞ þ e; ð1Þ

with error term e. To obtain F for a partly cloudy
measurement footprint, the independent pixel approxima-
tion [e.g., Marshak et al., 1995] is applied, viz.

F ¼ ð1! fcÞ Fclear þ fc Fcloud; ð2Þ

where fc is the cloud fraction and Fclear and Fcloud are the
components of the forward model for the clear sky and
cloudy parts of the measurement footprint, respectively. The
main part of the forward models Fclear and Fcloud is an
atmospheric radiative transfer model. Here, we employ the
vector radiative transfer model of Hasekamp and Landgraf
[2002] and the CODAGS vector radiative transfer model of
van Diedenhoven et al. [2006] to describe the radiative
transfer in the clear sky and cloudy part of the atmosphere,
respectively. This provides an efficient forward model
for partly cloudy atmospheres. The use of this model allows
us to model the polarization-sensitive measurements of
GOME and SCIAMACHY [Hasekamp et al., 2002; van
Diedenhoven et al., 2005]. In this way, errors due to the
polarization correction in the GOME and SCIAMACHY
data processing [Stam et al., 2000; Hasekamp et al., 2002;
Schutgens and Stammes, 2003] are avoided. To simulate the
spectral smoothing by the instruments, the instrument
response function of Bednarz [1995] is used.
[7] For the radiative transfer calculations, the absorption

line parameters of the oxygen A-band are taken from the
HITRAN 2004 spectroscopic database [Rothman et al.,
2005], and a Voigt lineshape is assumed. The cross-section
sampling and radiative transfer calculations in the oxygen

A-band are performed on a 0.005-nm spectral resolution,
which we found to be appropriate for a line-by-line simu-
lation in this spectral range. For the calculation of the cross-
sections of the weak oxygen dimer (O2–O2) absorption
lines around 360 and 380 nm, a Lorentz lineshape is used
with widths and center wavelengths taken from Greenblatt
et al. [1990]. The Rayleigh scattering cross-sections and
phase function are taken from Bucholtz [1995]. The scat-
tering properties of the cloud particles are calculated using
Mie theory [van de Hulst, 1957; de Rooij and van der Stap,
1984]. The size distribution of the cloud particles is as-
sumed to be log normal, with an effective radius of 6 mm
and an effective variance of 0.5 (see Hansen and Travis
[1974] for the definitions). Furthermore, we assume non-
absorbing cloud particles with a refraction index of 1.335.
This results in a scattering phase function with an asym-
metry parameter of 0.841. The cloud optical thickness tl at
a wavelength l is obtained from the value t550 at 550 nm
via

tl ¼ Cl

C550
t550; ð3Þ

where Cl and C550 are the Mie scattering cross-sections
at wavelength l and 550 nm, respectively. The reflection
of land surfaces and snow covered surfaces is modeled
by a Lambertian albedo. For retrievals above sea
surfaces, the surface reflection is characterized by a
modeled ocean reflection matrix. For this, the Fresnel
reflection on waves is calculated with the method of
Mishchenko and Travis [1997], assuming the wind-speed-
dependent distribution of surface slopes proposed by Cox
and Munk [1954]. The Lambertian surface albedo, which
is a free parameter in the retrieval, is added to the sea
surface reflection matrix.

2.2. Inversion

[8] The aim of an inversion is to find a state vector x̂ for
which forward model F(x̂) and measurement y are in
optimal agreement. Since the forward model is not linear
in the unknown parameters, the solution of the inversion
problem has to be found iteratively. Here, in each iteration
step n, we replace the forward model in (1) by its linear
approximation, i.e.

FðxÞ ' FðxnÞ þK ½x! xn); ð4Þ

where xn is the state vector for the iteration step under
consideration, and K is the Jacobian matrix containing the
derivatives of the forward model with respect to the
elements of xn. Thus, element Kij of K is defined by

Kij ¼
@Fi

@xj
ðxnÞ: ð5Þ

The derivatives are estimated using finite differencing. The
measurement vector y considered here does not contain
sufficient information to retrieve all seven unknown
parameters, and thus the corresponding inverse problem is
ill posed. This means that many combinations of the seven
parameters fit the measurement almost equally well within
the noise. As a result, the least squares solution to our
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inverse problem is overwhelmed by noise. In order to
reduce the effect of noise, we employ the Phillips–
Tikhonov regularization method [Phillips, 1962; Tikhonov,
1963] in a similar way as described in detail by Hasekamp
and Landgraf [2005]. The most important aspects are
summarized in Appendix A.
[9] Here, the retrieval result x̂ is a combination of

information extracted from the measurements and a priori
information and is related to the true state vector xtrue and
the a priori state vector xa via

x̂ ¼ Axtrue þ ðI! AÞxa þ ex; ð6Þ

where ex represents the error in the retrieval result caused by
the measurement error. Furthermore, A is the averaging
kernel of the retrieval (see equation (A5) in Appendix A).
The covariance matrix S of the error in x̂ is given by

S ¼ Sx þ Sr: ð7Þ

Here, Sx is the retrieval noise covariance matrix given by

Sx ¼ D Sy D
T ; ð8Þ

where D is the contribution matrix (see equation (A3) in
Appendix A), and Sy is the measurement error covariance
matrix. Furthermore, Sr is the regularization error covariance
matrix due to an error on xa and is given by

Sr ¼ ðI! AÞ Sa ðI! AÞT ; ð9Þ

where Sa is the a priori error covariance matrix.
[10] When the first-guess state vector is far from the true

state vector, the linear approximation of (4) hampers the
iterative solution of the inverse problem, resulting in no
convergence of the fit. To improve the convergence, the
Levenberg–Marquardt method [Levenberg, 1944;Marquardt,
1964] is used. The combination of the Levenberg–Marquardt
method and the Phillips–Tikhonov method is summarized
in Appendix B. The convergence of the algorithm including
the Levenberg–Marquardt method is checked using an
ensemble of simulated measurements with randomly distri-
buted cloud parameters. About 90% of the retrievals
converged. This is in accordance with the convergence rate
of retrievals on real GOME measurements. To improve

on this convergence rate, an unconverged retrieval could
be repeated with different first-guess values. This is how-
ever not yet implemented in the current version of the
retrieval algorithm.

3. Sensitivity Study

[11] In this section, we will investigate the information
content of reflectance measurements in the UV from 350 to
390 nm combined with those at the oxygen A-band from
758 to 770 nm for cloud parameter retrievals. The infor-
mation content will be compared to that of retrievals using
only measurements in the oxygen A-band, as commonly
used in cloud retrieval algorithms [Kuze and Chance, 1994;
Koelemeijer et al., 2001; Rozanov and Kokhanovsky, 2004].
For the combined oxygen A-band and UV measurements,
also the retrieval noise and regularization errors are dis-
cussed. Furthermore, we will asses the sensitivity of the
cloud parameter retrievals to instrument calibration errors.
[12] For this study, GOME measurements are simulated

for the US standard atmosphere using the cloud and surface
parameters given in Table 1. A nadir viewing geometry is
used with a solar zenith angle of 40!. The wind speed
needed to characterize Fresnel reflection on the sea waves is
set to 7 m/s. To simulate the measurement noise, a Gaussian
noise contribution is added to the simulated measurements.
The GOME measurement noise in the UV and oxygen A-
band windows is about 0.1%. However, we use a noise
contribution of 0.5% to account for forward model and
measurement errors with a random-like structure, such as
errors due to the ‘‘undersampling’’ effect [Chance et al.,
2005; van Deelen et al., 2007] and due to the Ring effect
[Joiner et al., 2004; Landgraf et al., 2004] in the UV
and errors in spectroscopy data and the instrument res-
ponse function [Yang et al., 2005; Tran et al., 2006; van
Diedenhoven et al., 2005] in the oxygen A-band region. It
is important to note that the conclusions made in this
section are not significantly different when assuming noise
contributions of 0.1–1%.

3.1. Information Content

[13] The information content of a measurement vector
can be studied by investigating the sensitivity of the
retrieved parameters to a priori information, @x̂i/@xa,i. As
can be concluded from (6), the diagonal terms aii of A
describe this sensitivity, viz.

@x̂i
@xa;i

¼ 1! aii: ð10Þ

For example, when @x̂i/@xa,i = 0, the corresponding
retrieved parameter is not dependent on its a priori value
and thus determined purely from the measurement.
[14] Figure 3 shows @x̂i/@xa,i for a measurement vector

containing only measurements in the oxygen A-band above
sea, vegetation, and snow surfaces. Above sea and vegeta-
tion surface types, the oxygen A-band measurements con-
tain significant information about the cloud top pressure and
cloud fraction. However, these measurements contain little
additional information about the cloud optical thickness.
Information about the surface albedo is hardly available for

Table 1. Sensitivity Study Parametersa

Parameter Value

Cloud optical thickness 10
Cloud top pressure 500 hPa
Cloud bottom pressure 700 hPa
Surface albedo O2 A-band sea 0.01
Surface albedo UV-window sea 0.05
Surface albedo O2 A-band vegetation 0.3
Surface albedo UV-window vegetation 0.05
Surface albedo O2 A-band snow 0.9
Surface albedo UV-window snow 0.9
Surface albedo slope O2 A-band 0
Surface albedo slope UV-window 0

aUnless stated otherwise.
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sea and vegetation surfaces. Measurements above snow
surfaces only contain significant information about the cloud
top pressure and less about the other cloud parameters.
Instead, information about the surface albedo is retrieved
from the measurements. This is because the effect on the
measurements of such highly reflective surfaces is very
similar to that of clouds.
[15] Figure 4 shows @x̂i/@xa,i corresponding to the ret-

rieved parameters when, in addition to measurements in
the oxygen A-band, measurements in the UV window are
included. It can be seen that now all cloud parameters can
be retrieved from the measurements with little dependence
on a priori information. Thus, the information content is
significantly increased by including UV measurements.
Furthermore, information about the surface albedos is
retrieved. Above sea surfaces, the dependence of the
retrieved surface albedo in the UV window on its a priori
value is low for low cloud fractions but increases rapidly
for increasing cloud fraction. The surface albedo in the
oxygen A-band window is determined almost entirely
from the a priori values for all cloud fractions. Above

vegetation surfaces, the surface albedo in the oxygen A-
band window is retrieved with only little dependence on a
priori for all cloud fractions. The dependence on a priori
for the surface albedo in the UV window is high but
slightly decreases for decreasing cloud fractions. For other
land surface types, excluding snow covered surfaces, the
information content is similar to that of vegetation surfaces
(not shown). Above snow covered surfaces, the surface
albedos are almost fully obtained from the measurements
with only little dependence on a priori. Here, the high
surface albedo enhances the contribution of Rayleigh
scattering in the UV close to the surface. Therefore, the
effect of the surface reflection to the measurements in
the UV is not similar to that of a cloud, in contrast to the
situation at the oxygen A-band. This avoids the use of a
priori albedo values of snow covered surfaces, which are
highly uncertain, for the retrieval of cloud parameters. The
linear dependences of the surface albedos are fully re-
trieved from the measurements in all cases and do not
significantly depend on a priori values (not shown).

Figure 3. Derivatives of retrieved cloud and surface parameters with respect to their a priori values as a
function of cloud fraction, for a measurement vector containing only measurements in the oxygen A-band
above sea (left panel), vegetation (middle panel), and snow (right panel) surfaces. The solid, dotted, and
short-dashed lines correspond to the cloud fraction, cloud optical thickness, and cloud top pressure,
respectively. The long-dashed line corresponds to the surface albedo at the oxygen A-band.

Figure 4. Same as Figure 3 but for a measurement vector containing measurements in the oxygen
A-band and the UV window between 350-390 nm. The dotted-dashed line corresponds to the surface
albedo in the UV window.
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[16] To summarize, using measurements in the UV in
addition to the oxygen A-band for a large part solves the
problem that cloud fraction and optical thickness cannot be
independently retrieved from GOME and SCIAMACHY
measurements.

3.2. Retrieval Noise and Regularization Errors

[17] The retrieval result given by (6) is affected by
retrieval noise due to random measurement errors and by
regularization errors due to uncertainties in the a priori
information. Figure 5 shows the retrieval noise on the cloud
fraction for measurements above sea, vegetation, and snow
covered surfaces. Above sea surfaces, the retrieval noise on
the retrieved cloud fraction is below 0.01 for all cloud
fractions. Above vegetation surfaces and snow covered
surfaces, the retrieval noise on the cloud fraction is below
0.05 and decreases slightly with increasing cloud fraction.
The retrieval noise on the cloud optical thickness is shown
in Figure 6. Above sea surfaces, the retrieval noise on the
retrieved cloud optical thickness is below 1 for all cloud

fractions. Above vegetation and snow covered surfaces, the
retrieval noise on the cloud optical thickness is below 2 and
1, respectively, for cloud fractions larger than 0.2 but
increases to about 3 for lower cloud fractions.
[18] The regularization errors are dominated by errors due

to errors on the a priori values of the surface albedos
because the dependence of the cloud parameters on their a
priori values is negligible for cloud fractions larger than 0.2.
To give an indication of the regularization errors on the
cloud parameters, Figures 5 and 6 also show the regulari-
zation errors due to errors of 0.005, 0.01, 0.02, and 0.05 on
the a priori surface albedo in the UV. Above sea surfaces, a
maximum occurs in the regularization errors on the cloud
fraction at a cloud fraction of *0.4. This is because, with
increasing cloud fraction, on the one hand, the dependence
of the retrieved surface albedo on its a priori value increases,
while on the other hand, the contribution of the surface
albedo to the measurements decreases (see Figure 4). The
regularization errors on the cloud fraction are below 0.1 for
errors on the a priori surface albedo in the UV below 0.01

Figure 5. Retrieval noise (solid line) and regularization errors (dashed lines) on the retrieved cloud
fraction for a measurement vector containing measurements in the oxygen A-band and the UV window
above sea (left panel), vegetation (middle panel), and snow (right panel) surfaces. Regularization errors
are shown for an error on the a priori surface albedo in the UVof 0.005, 0.01, 0.02, 0.05, corresponding
to dashed lines with increasing errors, respectively.

Figure 6. Same as Figure 5 but for the retrieval noise and regularization errors on the retrieved optical
thickness.
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and increase up to 0.5 for a priori surface albedo errors of
0.05. Above vegetation surfaces, the largest regularization
errors on the cloud fraction occur around cloud fractions of
0.3. For errors on the a priori surface albedo in the UV
below 0.01, the regularization errors are below 0.06. The
regularization errors increase to 0.27 for a priori surface
albedo in the UV errors of 0.05. Above snow covered
surfaces, all regularization errors are negligible because
here the surface albedos are obtained fully from the
measurements. As shown in Figure 6, the regularization
errors on the cloud optical thickness for retrievals above sea
peak at a cloud fraction of 0.2. The regularization errors on
the cloud optical thickness are below 7 for errors on the a
priori surface albedo in the UV below 0.01 and increase up
to 33 for a priori surface albedo errors of 0.05. Above
vegetation surfaces, the regularization errors on the cloud
optical thickness decrease with increasing cloud fraction. In
contrast to the situation above sea surfaces, here no max-
imum occurs because the effect of the decreasing contribu-
tion of the surface albedo to the measurements with
increasing cloud fraction is much larger than the effect
due to the increase of dependence of the retrieved surface
albedo on its a priori value. For a cloud fraction of 0.2, the
errors are below 3 for errors on the a priori surface albedo in
the UV below 0.01 and increase up to 15 for a priori surface
albedo errors of 0.05. Again, all regularization errors are
negligible for retrievals above snow covered surfaces. For
errors on the a priori surface albedo in the oxygen A-band,
similar results as shown in Figures 5 and 6 are obtained for
retrievals above sea surfaces. For retrievals above vegeta-
tion and snow covered surfaces, these errors are negligible.
The regularization error on the cloud top pressure due to
errors in the a priori surface albedos up to 0.05 is generally
below 5 hPa for all cases. In conclusion, accurate a priori
information on surface albedo in both wavelength windows
is needed for sea surfaces. Furthermore, for snow/ice-free

land surfaces, accurate a priori information on surface
albedo in the UV is required.

3.3. Sensitivity to Instrument Calibration

[19] GOME and SCIAMACHY measurements possibly
have significant calibration errors [Koelemeijer et al., 1998;
Tilstra et al., 2005]. Figure 7 shows the effect of calibration
errors in the range !5–5 % on the retrieved cloud fraction
and cloud optical thickness for retrievals over vegetation
surfaces. Here, the relative calibration errors are assumed to
be constant in the considered wavelength windows. Fur-
thermore, a cloud fraction of 0.5 is assumed. As seen in
Figure 7, small errors on the cloud fraction and optical
thickness are obtained when the calibration in the two
wavelength windows are correlated. Specifically, Figure 7a
shows that the error on the cloud fraction is 0 when the
calibration error in the oxygen A-band is about 2.5 times
the calibration error in the UV. Figure 7b shows that,
when the calibration error in the oxygen A-band is about
1.5 times the calibration error in the UV, the error on the
optical thickness is 0. To obtain errors in the cloud fraction
below 0.1 and in optical thickness below 2, the calibration
error in the oxygen A-band has to be about twice the
calibration error in the UV plus or minus 1%. When the
calibration errors in the two wavelength windows differ
considerably, large errors on the cloud fraction and optical
thickness can occur. Moreover, in these cases, convergence
of the inversion can become problematic. For decreasing
cloud fractions, the regularization errors generally decrease.
For example, for a calibration error of 2% at the oxygen
A-band and no calibration error in the UV, the error on the
cloud fraction decreases from 0.05 for a cloud fraction of
0.5 to 0.01 at a cloud fraction of 0.2. Furthermore, the error
on the cloud optical thickness decreases with cloud fraction
from 1.48 for a cloud fraction of 0.5 to 0.76 at a cloud
fraction of 0.2.

Figure 7. Absolute errors in the cloud fraction (a) and the cloud optical thickness (b) for retrievals above
vegetation surfaces when calibration errors are added on the UV and oxygen A-band windows. Here, a
cloud fraction of 0.5 is used in the simulated measurements.
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[20] For retrievals over sea surfaces, similar errors are
obtained. For retrievals above snow surfaces, the retrieval
errors due to all calibration errors up to ±5% are signifi-
cantly smaller and are generally below 2 in the optical
thickness and below 0.05 in the cloud fraction. The retrieval
errors on the cloud top pressure due to calibration errors are
generally low for all surface types.

3.4. Relevance to Tropospheric NO2 Retrievals

[21] In this section, the relevance of our cloud retrieval
algorithm for the retrieval of the tropospheric NO2 column
in cloudy atmospheres is discussed. Tropospheric NO2

columns derived with the Differential Optical Absorption
Spectroscopy (DOAS) technique [Platt, 1994] are an impor-
tant product of GOME, SCIAMACHY, and OMI measure-
ments [e.g., Beirle et al., 2003; Richter et al., 2005]. These
retrievals are particularly sensitive to clouds since the
tropospheric NO2 is generally below the cloud [Schaub et
al., 2006; Wang et al., 2006].
[22] In the DOAS technique, first the reflectance spec-

trum is separated into a spectrally smooth part, modeled by
a polynomial, and in a differential part from which a slant
gas column (SCD) is retrieved. Then, this slant column is
converted into a vertical column (VC) using an air mass
factor (AMF), via

VC ¼ SCD

AMF
ð11Þ

Here the NO2 AMF is given by

AMF ¼ !lnðR=R0Þ
tNO2

ð12Þ

where R and R0 are the reflectances at the top of atmosphere
at 440 nm with and without NO2 absorption, respectively.
Furthermore, tNO2

is the total NO2 absorption optical

thickness. To calculate tropospheric NO2 AMFs, we include
NO2 only in the lowest 2 km of the atmosphere. A NO2

volume mixing ratio of 2.3 ppb is assumed, which
corresponds to polluted situations. Furthermore, a surface
albedo for of 0.05 is assumed for the AMF calculations.
[23] Here, we will investigate the errors in the AMF

imposed by retrieval errors of our algorithm. Furthermore,
we will show AMF errors that result from the use of effective
cloud fractions and cloud top pressures retrieved from the
oxygen A-band to demonstrate the advantage of our ap-
proach compared to approaches that only retrieve effective
cloud parameters. For this, an ensemble of 600 cases is
constructed with randomly chosen cloud fractions between
0 and 1, cloud optical thickness values between 2 and 30, and
cloud top pressures between 400 and 600 hPa, above sea and
vegetation surfaces. For these cases, measurements in the UV
and oxygen A-band windows are simulated. Subsequently,
the presented cloud retrieval algorithm is applied to these
simulated measurements. For the cloud retrieval, an a priori
cloud optical thickness of 5 and an a priori cloud top pressure
of 500 hPa are taken. For the a priori cloud fraction, the
effective cloud fraction is taken that corresponds to the priori
cloud optical thickness. A random error of between !10%
and +10% is assumed on the a priori surface albedos. In
addition, effective cloud fractions and cloud top pressures
are retrieved from the simulated measurements in the oxygen
A-band, assuming a cloud optical thickness of 40. Then, for
all cases, AMFs are calculated for the cloud parameters in the
simulated measurements, the retrieved cloud parameters, and
the effective cloud parameters. The cases for which our
algorithm did not converge are removed from this study.
Note that for all cases, all NO2 is located below the height of
the base of the cloud.
[24] Figure 8 shows histograms of the differences be-

tween the reference AMFs and those calculated with the
retrieved cloud parameters and effective cloud parameters.
The use of effective cloud parameters generally results in an
underestimation of the AMF. The asymmetric distribution
of AMF errors has a mean of !12.4%, a 68% confidence
interval of ±10% and a significant wing toward negative
errors. Using simulated measurements, Wang et al. [2006]
also found a similar underestimation of the AMF for most
solar zenith angles and cloud parameters. Thus, the use of
effective cloud parameters generally leads to a significant
overestimation of the tropospheric NO2 column. A similar
systematic overestimation was observed by Schaub et al.
[2006] for tropospheric NO2 column retrievals from GOME
measurements in cloudy conditions when using effective
cloud parameters obtained by FRESCO [Koelemeijer et al.,
2001]. When cloud parameters retrieved by the proposed
algorithm are used, the errors in the AMF are symmetrically
distributed around the mean of 0.4% with a 68% confidence
interval of ±4.8%. Thus, the use of cloud parameters retrieved
by our algorithm may be expected to solve the systematic
overestimation of tropospheric NO2 columns from GOME
and SCIAMACHY measurements caused by effective cloud
parameters in cloudy conditions.

4. Application to GOME Measurements

[25] In this section, we apply our retrieval algorithm for
cloud parameters to GOME measurements. Here we use

Figure 8. Histogram of the differences between the
tropospheric NO2 AMFs calculated for a random ensemble
of cloud parameters and AMFs calculated for the corre-
sponding retrieved cloud parameters (solid line) and
effective cloud parameters (dashed line). The AMFs are
calculated at 440 nm. Here a surface albedo of 0.05 is used.
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3400 measurements spread evenly over the year 1997,
above the European area, North Africa, and the Atlantic
ocean. The areas and time range are chosen since it provides
a data set with a considerable range of conditions. The
retrieval results are compared with the effective cloud
fractions and effective cloud pressures retrieved with the
commonly used FRESCO algorithm [Koelemeijer et al.,
2001] from the same measurements. Furthermore, we com-
pare our results with cloud fractions, cloud optical thick-
nesses, and cloud top pressures retrieved from ATSR-2
measurements using the Global Retrieval of ATSR Cloud
Parameters and Evaluation (GRAPE) algorithm [Watts et
al., 1998; Poulsen et al., 2005].
[26] In these comparisons, retrievals above snow covered

surfaces, deserts, and sea surfaces with a significant contri-
bution of sunglint are avoided, since both the GRAPE and
FRESCO retrieval results are unreliable or unavailable for
these cases [Koelemeijer et al., 2001; Poulsen et al., 2005].

4.1. Retrieval Input

[27] To model the GOME measurements, scattering and
absorption cross-sections are calculated for atmospheric
temperature and pressure profiles from the United King-
dom Met Office (UKMO) Stratospheric Assimilated data
set at the locations closest to the center of each GOME
measurement footprint. Furthermore, the surface elevation
averaged over the GOME footprint is determined from the
TerrainBase surface elevation database. To account for the
variation in viewing angle within a GOME footprint,
measurements are simulated for three viewing angles
corresponding to the middle, west and east boundaries of
the GOME footprint. The simulations are linearly interpo-
lated and subsequently integrated over viewing angle. In
the UV window, systematic structures due to the Ring
effect [Joiner et al., 2004; Landgraf et al., 2004] and the
‘undersampling’ effect [Chance et al., 2005; van Deelen
et al., 2007] appear in the GOME measurements. These
structures are partly removed by fitting theoretically calcu-
lated Ring spectra [Landgraf et al., 2004] and ‘‘under-
sampling’’ effect correction spectra to the data in addition
to the cloud parameters. For these spectra, an amplitude
and a wavelength shift and squeeze are fitted.
[28] The a priori surface albedos are obtained from the

monthly 1! " 1! resolution Minimum Lambertian-Equiva-
lent Reflectivity (MLER) database determined from cloud-
free GOME observations [Koelemeijer et al., 2003]. For this
purpose, the MLER database gridboxes overlapping the
GOME footprint are averaged, weighted by the amount of
overlap. For GOME footprints containing more than 95%
sea surfaces, the Fresnel reflection on the waves is charac-
terized by a modeled ocean reflection matrix, as discussed in
section 2.1. For this, the required wind speedwindspeed is
taken from re-analysis data of the European Center for
Medium range Weather Forecasting (ECMWF) averaged
over the GOME footprint.
[29] The pressure difference between the top and bottom

of the cloud is fixed to 200 hPa, since this is a common
geometrical thickness for middle- and low-level clouds
[Wang et al., 2000]. The a priori cloud optical thickness is
set to 5, which is roughly the mean global value for middle-
and low-level clouds [Rossow and Schiffer, 1999]. The a
priori values of the cloud fraction are the effective cloud

fractions corresponding to the a priori cloud optical thick-
ness. The a priori cloud top pressures are taken from data
from the FRESCO algorithm [Koelemeijer et al., 2001]. It is
important to note however that the cloud fraction and cloud
top pressure retrieved by our algorithm only minimally
depend on their a priori values, as discussed in section 3.1.

4.2. Comparison to FRESCO Results

[30] In the FRESCO algorithm, clouds are approximated
by reflecting boundaries with a Lambertian albedo of 0.8.
Furthermore, surface albedos are taken from Koelemeijer et
al. [2003]. With these assumptions, effective cloud fractions
and effective cloud pressures are retrieved from measure-
ments in the oxygen A-band. Figure 9 shows the cloud
fractions retrieved by our algorithm compared to the effec-
tive cloud fractions obtained by FRESCO (version 3). For
clouds with a cloud fraction higher than 0.2 and an optical
thickness between 30 and 60 (diamonds), the cloud fraction
retrieved using our algorithm and effective cloud fractions
from FRESCO agree well. For optically thinner and thicker
clouds, the cloud fractions obtained by our algorithm are
generally higher and lower, respectively, than the effective
cloud fractions from FRESCO. This is as expected since
clouds with optical thickness around 40 have Lambertian
equivalent albedos around 0.8, which is the value assumed
in the FRESCO algorithm. When the cloud optical thickness
is lower or higher than 40, this is compensated in FRESCO
by respectively increasing or decreasing the effective cloud
fraction. Thus, for cloud fractions larger than 0.2, the cloud
fractions retrieved by our algorithm are consistent with the
effective cloud fractions retrieved by FRESCO, given the
definition of the effective cloud fraction in FRESCO. For
cloud fractions lower than 0.2 above land, often the effec-
tive cloud fractions from FRESCO are higher than the cloud
fractions retrieved by our algorithm. This is probably due to
a difference in the surface albedo in the oxygen A-band
window assumed by the FRESCO algorithm and that
retrieved by our algorithm.
[31] Figure 10 shows the histogram of the differences

between cloud top pressures retrieved by our algorithm and
the effective cloud pressures from FRESCO. These differ-
ences have a median of !59 (±40) hPa or 0.77 (±0.70) km,
where the value between brackets indicates the 68% confi-
dence interval. The systematic difference depends on the
optical thickness of the clouds included in the comparison,
namely the difference increases for decreasing cloud optical
thickness. This systematic difference is probably due to the
neglect of scattering and absorption within the cloud and the
transmission of light through the cloud by the FRESCO
algorithm [Koelemeijer et al., 2001].

4.3 Comparison to ATSR-2 Retrievals

[32] In this subsection, our retrieval results are compared
with cloud parameters retrieved from ATSR-2, which is on
the same platform as GOME. ATSR-2 has a subsatellite
footprint size of 1 " 1 km2, and its swath entirely overlaps
with the footprints of GOME for the used observations.
[33] We use ATSR-2 cloud parameters retrieved by the

GRAPE algorithm, version 1 [Watts et al., 1998; Poulsen
et al., 2005; http://www-atm.physics.ox.ac.uk/group/grape/].
At the time of preparation of this paper, version 2 GRAPE
data were not yet available. In the GRAPE algorithm, first
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cloudy ATSR-2 pixels are identified using a cloudfilter. For
these cloudy pixels, then an optimal estimation procedure is
used to estimate cloud fraction, cloud optical thickness, and
cloud top pressure as well as the effective radius of the
cloud particles, using measurements of the 0.67, 0.87, 1.6, 11
and 12 mm channels on ATSR-2. Furthermore, the cloud
phase (water or ice) is determined.
[34] To compare the retrievals on the GOME spatial

resolution, the cloud fractions retrieved by GRAPE for
ATSR-2 measurements within a GOME footprint are aver-
aged. Furthermore, the GRAPE cloud top pressures and
optical thickness values within a GOME footprint are
averaged weighted by the GRAPE cloud fraction. ATSR-2
measurements for which the GRAPE algorithm retrieved a
cloud optical thickness below 2 are considered as clear sky,

since most of these cases are either thin cirrus clouds for
which GOME is insensitive or pixels falsely identified as
cloudy by the strict cloudfilter used by GRAPE.
[35] Figures 11 and 12 show histograms of the differences

between the cloud fractions and optical thickness, respec-
tively, retrieved by our algorithm and those from ATSR-2.
For the comparisons of the optical thickness, all cases with a
cloud fraction lower than 0.05 are excluded. The cloud
fraction and optical thickness values retrieved by our
algorithm compare well to the corresponding ATSR-2
values. Here, the differences between the GOME and
ATSR-2 values have median values of !0.01 (±0.11) for
the cloud fraction and 2.5 (±7.5) for the cloud optical
thickness. No obvious dependence of these results on
geometry, location, or surface albedos is found. Retrievals
performed for a fixed cloud geometrical thickness of
100 hPa instead of 200 hPa only yield mean differences
in cloud fraction and cloud optical thickness of less than
0.01 and 0.5, respectively.
[36] The distributions of the differences in cloud fraction

and cloud optical thickness both show significant wings,
where the cloud fractions are underestimated by our algo-
rithm as compared to the ATSR-2 values, and at the same
time the cloud optical thickness values are overestimated.
This is the situation for about 15% of all cases above land.
The standard deviation of the ATSR-2 optical thickness
values within the GOME pixels for these cases are about 20,
which is about twice as high as compared to the average
value. This indicates that the obtained biases for these cases
could be due to the presence of horizontally inhomogeneous
clouds. Furthermore, multilayered clouds could cause these
biases. This is indicated by the fact that, for these cases, the
cloud top pressures retrieved by ATSR-2 are on average
about 67 hPa lower than those retrieved by GOME. This
difference is expected for multilayered clouds since ATSR-2
is mostly sensitive for the top layer, while GOME retrieves
a higher cloud top pressure in these cases [Rozanov et al.,
2004]. It is important to note that the c2 values of the
spectral fit to the measurements for these cases are very

Figure 9. Comparison of retrieved cloud fractions using
the presented algorithm and the effective cloud fractions
retrieved by the FRESCO algorithm. The different symbols
correspond to selected ranges in retrieved cloud optical
thickness tcloud. Furthermore, a represents the slopes of the
linear functions fitted through the data in the selected ranges
and the origin.

Figure 10. Histogram of DPc defined as the cloud top
pressures retrieved by our algorithm minus the effective
cloud pressures from FRESCO. In this comparison, all cases
with a cloud fraction lower than 0.05 are excluded.

Figure 11. Histogram of Dfc defined as cloud fractions
retrieved from GOME measurements using the presented
algorithm minus those retrieved from ATSR-2 measure-
ments using the GRAPE algorithm averaged over the
corresponding GOME footprint.
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similar to those of other cases. This suggests that these
retrieved parameters may still be very useful for the retrieval
of trace gas abundances from the corresponding GOME
measurements. Wavelength-dependent effects due to inho-
mogeneous or multilayered clouds are partly taken into
account since cloud parameters are retrieved that describe
the spectrum in both the UV and the oxygen A-band.
[37] Figure 13 shows the histogram of the differences

between the cloud top pressure retrieved by our algorithm
and the ATSR-2 values. Again, all cases with a cloud
fraction lower than 0.05 are excluded. The differences
between the cloud top pressure retrieved by our algorithm
and the ATSR-2 values have a median of !33 (±111) hPa or
0.4 (±1.6) km. No obvious dependence of these results on
geometry, location, or surface albedos is found. Rozanov
et al. [2006] find a similar bias and spread of 0.6 (±1.8) km
between cloud top pressures derived from ATSR-2 and
those derived from fully clouded GOME measurements

with the Semi-analytical Cloud Retrieval Algorithm
(SACURA) [Rozanov and Kokhanovsky, 2004]. Thus, the
retrieved cloud top pressures can be assumed to be consis-
tent to those of SACURA. Rozanov and Kokhanovsky
[2004] showed that the cloud top pressure derived from
the oxygen A-band depends on the assumed geometrical
thickness of the cloud. When in our algorithm the cloud
geometrical thickness is fixed at 100 hPa instead of 200 hPa,
the mean retrieved cloud top pressure is about 50 hPa higher
(or 0.8 km lower). Thus, the negative bias of the retrieved
cloud top pressure compared to the ATSR-2 values could be
due to an overestimation of the cloud geometrical thickness.
To account for this, the geometrical thickness of the cloud
layer could in the theory be retrieved from the measurements
as well. However, in practice this often leads to unphysical
retrieval results with cloud bases under the ground surface
due to the presence of multilayered or vertically inhomoge-
neous clouds [Rozanov and Kokhanovsky, 2004]. The
negative bias of the retrieved cloud top pressure compared
to the ATSR-2 values could also be due to systematic
overestimation of the cloud top pressures by ATSR-2, since
cloud top pressures determined using infrared brightness
temperature measurements, as in GRAPE, are known to be
biased toward higher cloud top pressures [Rossow and
Schiffer, 1999; Sherwood et al., 2004]. Here, the difference
between the cloud top pressures from GOME and ATSR-2
clearly depends on the optical thickness of the cloud,
especially above land. For example, for clouds with an
optical thickness higher than 40, the cloud top pressures
retrieved by our algorithm are on average about 95 hPa
higher (or 1.27 km lower) than the ATSR-2 cloud top
pressures. However, when only clouds with an optical
thickness below 10 are compared, the cloud top pressures
retrieved by our algorithm are on average about 85 hPa lower
(or 1.09 km higher) than the ATSR-2 cloud top pressures. It
is not clear whether this dependency on optical thickness is
caused by GRAPE or by our algorithm.

4.4. Spectral Fitting Residuals

[38] Figure 14 shows the obtained mean spectral fitting
residual in the UV window and its standard deviation.

Figure 12. Similar to Figure 11 but for Dtc defined as the
cloud optical thickness retrieved by our algorithm minus the
ATSR-2 values. Here all cases with a cloud fraction lower
than 0.05 are excluded.

Figure 13. Similar to Figure 11 but for DPc defined as the
cloud top pressures retrieved by our algorithm minus the
ATSR-2 cloud top pressures. Only clouds with cloud
fractions larger than 0.05 are included in this histogram.

Figure 14. Mean spectral fit residual between forward
model and GOME measurements in the UV window. The
standard deviation around the mean is indicated with the
grey area.
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Averaged over the whole wavelength range in this window,
the mean spectral fitting residual is 0.005%, and the mean of
the standard deviations is 0.21%. The residuals show no
significant broad spectral behavior, but many spectral fine
structures are apparent. Similar fine structures were also
found by Joiner et al. [2004] analyzing GOME data. These
residuals are probably due to insufficient correction of the
‘‘undersampling’’ effect [van Deelen et al., 2007] and the
Ring effect [Joiner et al., 2004; Landgraf et al., 2004].
[39] In Figure 15, the obtained mean spectral fitting

residual in the oxygen A-band and its standard deviation
are shown. In this window, the mean spectral fitting residual
and the mean standard deviation averaged over the wave-
length range are !0.24% and 2.1%, respectively. Especially
around the deep R-branch at 761 nm, the spectral fitting
residual and the standard deviation are high. The mean
residuals are very similar to those found by van Diedenhoven
et al. [2005] retrieving surface pressures from SCIA-
MACHY and GOME measurements in the oxygen A-band.
This indicates that many of these structures in the mean
residuals may be due to errors in the spectroscopy data
[Chance, 1997; Rothman et al., 2005], assumption of the
spectral lineshapes [Yang et al., 2005; Tran et al., 2006], and
insufficient knowledge of the instrument response function.
The large spread and the large residual structure around
761 nm could be related to approximations made in the cloud
model such as the fixed geometrical thickness and the use of
a homogeneous cloud layer.
[40] The systematic structures in the residuals could lead

to unaccounted biases in the retrieval.

5. Conclusions

[41] In this paper, we have presented a new method to
retrieve information about cloud fraction, cloud optical
thickness, and cloud top pressure from GOME and SCIA-
MACHY measurements. Additionally, information on sur-
face albedo is retrieved. The method makes use of
measurements at the oxygen A-band from 758 to 770 nm
and in the UV from 350 to 390 nm. The inversion is based on
the Phillips–Tikhonov regularization method. An advantage
of this approach in comparison to common approaches using
only the oxygen A-band is that, in addition to the cloud top
pressure, information about both the cloud fraction and
cloud optical thickness can be retrieved, instead of only an

effective cloud fraction. The retrieved cloud parameters are
relevant for the retrieval of trace gas abundances in cloudy
atmospheres.
[42] It was shown that measurements at the oxygen A-

band alone do not contain sufficient information for the
independent retrieval of the cloud fraction, cloud optical
thickness, and cloud top pressure. Adding the UV window
allows to retrieve significant information about all three
cloud parameters. Furthermore, information about the sur-
face reflection can be obtained from these measurements.
The UV window adds information on the cloud fraction
because in the clear sky part of the measurement, the
spectrum is dominated by Rayleigh scattering, which has
a strong wavelength dependence. Due to the significant
differences between the spectral signature of Rayleigh
scattering and that of scattering by cloud particles, the UV
window is especially sensitive to the cloud fraction.
[43] Using simulated measurements, it was shown that

the use of effective cloud fractions and cloud top pressures
leads to a significant systematic underestimation of the
tropospheric NO2 AMF in cloudy atmospheres, which can
be avoided using cloud parameters retrieved by the pro-
posed algorithm.
[44] The cloud retrieval algorithm was applied to GOME

data, and the results were compared to effective cloud
parameters from the FRESCO algorithm [Koelemeijer et
al., 2001]. In the FRESCO algorithm, clouds are approxi-
mated by reflecting boundaries with a Lambertian albedo of
0.8. The cloud fractions retrieved by our algorithm are
consistent with the effective cloud fractions retrieved by
FRESCO, given the definition of the effective cloud fraction
in FRESCO. Also, the cloud top pressures retrieved by our
algorithm generally agree well with the effective cloud
pressures retrieved by FRESCO with a 68% confidence
interval of ±40 hPa, although an offset of about !60 hPa
is observed. Furthermore, our results were compared to
cloud parameters retrieved from ATSR-2 measurements by
the GRAPE algorithm. The distributions of the differences
between the cloud fractions, cloud optical thickness, and
cloud top pressures retrieved by our algorithm and the
corresponding ATSR-2 values have median values of
!0.01 (±0.11), 2.5 (±7.5), and!33 (±111) hPa, respectively.

Appendix A: The Phillips–Tikhonov
Regularization Method

[45] The Phillips –Tikhonov regularization method
[Phillips, 1962; Tikhonov, 1963] can be used to reduce the
effect of measurement noise in ill-posed inverse problems. In
the Phillips–Tikhonov regularization method, the solution
x̂reg is given by the least squares solution with an additional
side constraint, viz.

x̂reg ¼ min
x

jjS!
1
2

y ðFðxÞ ! yÞjj
2

þ g jjGxjj2
! "

; ðA1Þ

where G is a diagonal matrix that contains weighting factors
for the different state vector elements in the side constraint,
and g is the regularization parameter. In its linear
approximation, the solution x̂reg in (A1) can be written as

x̂reg ¼ D ~y ðA2Þ

Figure 15. Same as Figure 14 but for the oxygen A-band.
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where ~y = y ! F(x) + Kx and D is the contribution matrix
defined by

D ¼ ðKT S!1
y K þ gGÞ!1 KT S!1

y ; ðA3Þ

where the superscript T denotes the transposed matrix. Since
the weighted norm of the state vector is a quantity that is
very sensitive to noise contributions, these contributions are
reduced by introducing the side constraint in (A1). For the
Phillips–Tikhonov solution, g should be chosen such that
the minimizations of the weighted least squares norm
||Sy

1
2(F(x) ! y)|| and the weighted solution norm ||Gx|| in (A1)

are well balanced. Such a value for g is found from the so-
called L-curve [Hansen and O’Leary, 1993; Hansen, 1992].
[46] The weighting factors in the matrix G are defined

relative to the elements of the corresponding state vector of
the iteration step under consideration, making Gx dimen-
sionless. Increasing the weighting factor in G for a certain
parameter decreases the information about this parameter
that is obtained from the measurements, while for other
parameters, more information is taken from the measure-
ments. Since the a priori information about the surface
albedos in our retrieval scheme is more accurate than a
priori information of cloud parameters and because we
focus our retrieval scheme on the retrieval of cloud
parameters, we increase the weights in G corresponding
to the surface albedos by a factor of 10 relative to the
weights corresponding to the cloud parameters.
[47] Owing to the inclusion of the side constraint in (A1),

the state vector x̂reg retrieved using (A1) does not represent
an estimate of the true state vector xtrue, but its elements
represent weighted averages of the elements of xtrue. Since
xtrue contains several different cloud and surface parameters,
the weighted averages in x̂reg have a limited physical
meaning. Therefore we include information from an a priori
state vector xa in the solution to make it a meaningful
estimate of xtrue, viz.

x̂ ¼ x̂reg þ ðI! AÞxa: ðA4Þ

Furthermore, A is the averaging kernel [Rodgers, 2000],
given by

A ¼ @x̂

@xtrue
¼ KT S!1

y K þ gG
# $!1

KT S!1
y K: ðA5Þ

For more details about the Phillips–Tikhonov regularization
method, we refer to the paper of Hasekamp and Landgraf
[2005].

Appendix B: The Levenberg–Marquardt Method

[48] The Levenberg–Marquardt method [Levenberg,
1944; Marquardt, 1964] can be used to improve the
convergence of a nonlinear iterative inversion problem.
Applying the Levenberg–Marquardt method in combina-
tion with the Phillips–Thikhonov method described in
Appendix A, the solution x̂nþ1 for iteration step n + 1 is
given by [Rodgers, 2000]

x̂nþ1 ¼ x̂n þ ½Gðg þ lÞ þKT
n S

!1
y Kn)!1

½KT
nS

!1
y ðy! FðxnÞÞ ! gjjGðx̂n ! xaÞjj);

ðB1Þ

where the parameter l is introduced to limit the change in x
in each iteration step. We follow the procedure by Press
et al. [1992] for the choice of l. When the Levenberg–
Marquardt procedure has converged, l = 0 and the
Phillips–Thikhonov regularization described in Appendix
A is used. For more details about the Levenberg–Marquardt
method, we refer to the study by Rodgers [2000].
[49] Although the Levenberg–Marquardt method improves

the convergence of the iterative inversion problem discussed
in section 2.2, still many iterations are needed due to the
strong nonlinearity of the problem. This nonlinearity is
mainly due to the strong dependence of the Jacobian matrix
K on the cloud fraction. To reduce the computational effort,
the forward models Fcloud and Fclear in (2) are approximated
by their linear approximations

~FcloudðxcloudÞ ' Fcloudðxcloud0 Þ þKcloudðxcloud0 Þ½xcloud ! xcloud0 ) and
~FclearðxclearÞ ' Fclearðxclear0 Þ þKclearðxclear0 Þ½xclear ! xclear0 ); ðB2Þ

respectively, where xcloud is a subset of the state vector
containing surface and cloud parameters, and xclear is a
subset containing only surface parameters. Furthermore,
x0
cloud and x0

clear are the sets of parameters for which the
exact calculation of Fclear and Fcloud were performed. Kcloud

and Kclear are the Jacobian matrices for the cloudy part and
clear sky part of the measurement footprint, respectively.
Using (B2), the forward model F can be approximated by

~F ¼ ð1! fcÞ ~Fclear þ fc ~Fcloud: ðB3Þ

The derivative of ~F with respect to the cloud fraction fc is

@~F

@fc
¼ ~Fcloud ! ~Fclear: ðB4Þ

Furthermore, the derivatives of ~F with respect to the other
parameters xi are

@~F

@xi
¼ ð1! fcÞ

@Fclear

@xi
ðxclear0 Þ þ fc

@Fcloud

@xi
ðxcloud0 Þ: ðB5Þ

Thus, using (B2), (B3), (B4), and (B5), the forward model
and the Jacobian matrix at state vector x can be
approximated using exact forward model calculations at
state vector x0 without any significant computational effort.
When the iteration using this approximate forward model
has converged, a new exact forward model calculation is
performed to initiate the next iteration.
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